Using AVs to shield micromobility lanes

RUTT BRIDGES
EXECUTIVE DIRECTOR, UNDERSTANDING DISRUPTION INC.
SEPTEMBER 20 2019
What’s wrong with today’s urban bike lanes?

- Unprotected bike/scooter lanes next to high-speed auto traffic
 - 40 mph two-ton auto vs. 15 mph 30-pound bike: We all know who loses
 - In 2016, 840 cyclists died in crashes (71% on urban roads, 84% male)
 - Distracted driving, road hazards, and vehicular collisions

- 2018 U.S. Bicycling Participation Survey of 9,376 adults
 - 47% of adults in the U.S. want to ride bikes more often,
 - 50% worry about being hit by a car (#1 concern), and
 - 43% “more likely to ride if autos and bikes were physically separated

Conclusion: Micromobility lanes need more effective protection than a coat of green paint.
NACTO’s Urban Bikeway Design Guide

Option 1: Using curbside parking lanes as a border

- Advantages
 - Cheapest solution
 - Retains curbside parking
 - Less political push-back

- Disadvantages
 - No real barrier from high-speed auto traffic
 - Autos must cross the bike lane to park
 - Easy to get “doored” as drivers park then exit cars
 - Danger from turning cars
Parking as a bike lane traffic barrier

Option 2: Curbside bike lane, parking lanes as a traffic barrier

- **Advantages**
 - Retains parking, thus less political pushback
 - Parked cars are a good traffic barrier

- **Disadvantages**
 - Pedestrians must cross bike lanes to access cars
 - Cost of relocating meters from the curb
 - Need a wide door zone on auto passenger side
 - Danger from turning cars

Image by [Pittsburgh Post-Gazette](http://www.post-gazette.com), non-commercial educational Fair Use
Flex Post traffic barriers

Option 3: Flex Post barriers to protect bike lanes

- **Advantages**
 - Safer solution
 - Autos don’t drift into bike lanes
 - Moderate construction cost
 - Moderate maintenance cost

- **Disadvantages**
 - Flex posts can’t stop a distracted driver’s two-ton SUV
 - Lost parking? Political and business push-back
 - Pedestrians and jaywalkers may wander into bike lanes
 - Danger from turning cars

Image by CBC/Radio Canada, non-commercial educational Fair Use
Landscape traffic barriers

Option 4: Landscape barriers protect bike lanes

- **Advantages**
 - Safest solution
 - Autos won’t run over planters to park in bike lanes
 - Fender-benders seldom push across these barriers

- **Disadvantages**
 - Lost parking? Locals and businesses will push back
 - Sidewalk pedestrians and jaywalkers may wander into bike lanes
 - Higher construction cost
 - Highest maintenance cost
 - Danger from turning cars

Image by Paul Krueger, non-commercial educational Fair Use
Dedicated dual micromobility lanes

Option 5: Dual lanes for parks and greenfield development

- Advantages
 - Two lanes are much safer than one
 - No autos competing for lanes
 - More space for sharing with scooters
 - Overpasses can eliminate dangerous intersections

- Disadvantages
 - Hard sell for most urban settings
 - Substantial right-of-way is required
 - High construction cost
 - Moderate maintenance cost
Cycle-friendly junction design the Dutch way

30% of US fatalities occur at street junctions

Here’s how the Dutch minimize this risk

Video and image courtesy of BicycleDutch, used under Creative Commons Attribution-ShareAlike 4.0 International License
The invasion of the *Delivery Robots*

- Billions are pouring into delivery robots
- They may soon begin arriving on our streets and sidewalks
- Sizes range from large street-legal mini-stores to small sidewalk crawlers
- As with the initial introduction of scooters, few cities or suburbs have given much thought to the problems they may create

What opportunities might they bring as well?
Nuro, 3.6 ft wide, recent $940 million venture

Neolix+Baidu, 3 ft wide, 100,000 units w/in 5

Robomart+Stop&Shop, 4.7 ft wide

Cleveron (Estonia): Package delivery

All images non-commercial educational Fair Use
Amazon’s Scout delivery

Starship-Mercedes

Eliport delivery AV + package storage unit

Boxbot-Toyota delivery AV

Marble package delivery AV

All images non-commercial educational Fair Use
EffiBot - DHL heavy delivery sled

Robby - PepsiCo Snack Fleet

Kiwi software + third-party robots

Postmates: Food, small packages

TeleRetail ThyssenKrupp delivery

All images non-commercial educational Fair Use
Small delivery robots will crowd urban sidewalks

- The problem
 - Even if deliveries were limited to a ten-block radius, the urban impact is significant
 - Imagine the lunch hour surge

- The opportunity
 - Create *toll lanes* into key urban and residential delivery zones
 - Pair delivery AV lanes with protected micromobility lanes
 - Use tolls to pay construction and maintenance costs
 - Consider small strategically located clusters of drone copters for small package delivery

There are currently over ten small delivery robots with many more under development

Image by startengine.com/eliport, non-commercial educational Fair Use
Two AV sled-serviced models:
1) electric autonomous sleds that deliver the last-mile delivery vehicles, or
2) electric autonomous sleds that deliver packages near small “drone ports”

Front View, as an AV Carrier

Side View, as a small package Carrier
Flex Posts and Cable Posts barriers

Flex Post barriers

- Flex posts are adequate barriers between bikes/scooters and AVs and are far safer than cable posts. Note that AVs are programmed to avoid collisions.

Cable Post barriers

- Cable post barriers with traffic-side rumble strips will deeply discourage motorists from entering AV lanes.
- A simple single waist-high cable post or rope barrier will discourage jaywalkers and prevent distracted pedestrians from wandering into bike lanes.

Minimize lane barriers based on need
Protect micromobility with an AV delivery/transit shuttle lane

Micromobility Lanes shielded from traffic by Autonomous Vehicles